Skip to main content

Advertisement

Log in

In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min−1. From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C. Besides, the Ti 2p3/2 and Ti 2p1/2 binding energies showed the presence of the Ti4+ oxidation state. According to the in vitro bioassay, the modified surface proved its outstanding capability in enhancing the bioactivity, where a thick layer of bone-like apatite was formed on the annealed TiO2 nanotube surface. In addition, the corrosion measurements indicated that the corrosion protection efficiency increased remarkably and reached 87% after annealing at 500 °C.

Surface modification of biomedical grade Ti64 alloy by the electrochemical anodization protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

–:

 Corrosion behavior and bioactivity of TiO2 nanotubes on Ti64 were investigated.

–:

 Themodified surface showed an outstanding capability in enhancing the bioactivity.

–:

 Corrosion protection efficiency increased remarkably after annealing at 500 °C.

–:

 Ti 2p3/2 and Ti 2p1/2 components confirmed the existence of Ti4+ state.

References

  1. Park, J.B., Lakes, R.S.: Biomaterials: an introduction. Springer, New York (2007)

    Google Scholar 

  2. Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R. 87, 1–57 (2015)

    Article  Google Scholar 

  3. Biehl, V., Wack, T., Winter, S., Seyfert, U.T.: Evaluation of the haemocompatibility of titanium based biomaterials. J. Breme. Biomol. Eng. 19, 97–101 (2002)

    Article  Google Scholar 

  4. Zberg, B., Uggowitzer, P.J., Loeffler, J.F.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009)

    Article  Google Scholar 

  5. Rafieerad, A.R., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Sarraf, M., Nasiri-Tabrizi, B.: Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application. Sur. Coat. Technol. 265, 24–31 (2015)

    Article  Google Scholar 

  6. Sarraf, M., Bushroa, A.R., Nasiri-Tabrizi, B., Dabbagh, A., Abu Kasim, N.H., Basirun, W.J., Bin Sulaiman, E.: Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti–6Al–4V. J Mech. Behav. Biomed. Mater. 66, 159–171 (2017)

    Article  Google Scholar 

  7. Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 47, 49–121 (2004)

    Article  Google Scholar 

  8. Kurella, A., Dahotre, N.B.: Laser induced multi-scale textured zirconia coating on Ti-6Al-4V. J. Mater. Sci. Mater. Med. 17, 565–572 (2006)

    Article  Google Scholar 

  9. Guleryuz, H., Cimenoglu, H.: Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surf. Coat. Tech. 192, 164–170 (2005)

    Article  Google Scholar 

  10. Wang, L.-N., Jin, M., Zheng, Y., Guan, Y., Lu, X., Luo, J.-L.: Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomed. 9, 4421–4435 (2014)

    Article  Google Scholar 

  11. Zwilling, V., Aucouturier, M., Darque-Ceretti, E.: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta. 45, 921–929 (1999)

    Article  Google Scholar 

  12. Rafieerad, A.R., Bushroa, A.R., Zalnezhad, E., Sarraf, M., Basirun, W.J., Baradaran, S., Nasiri-Tabrizi, B.: Microstructural development and corrosion behavior of self-organized TiO2 nanotubes coated on Ti–6Al–7Nb. Ceram. Int. 41, 10844–10855 (2015)

    Article  Google Scholar 

  13. Shiyi, C., Qun, C., Mingqi, G., Shuo, Y., Rong, J., Xufei, Z.: Morphology evolution of TiO2 nanotubes by a slow anodization in mixed electrolytes. Surf. Coat. Tech. 321, 257–264 (2017)

    Article  Google Scholar 

  14. Yan, S., Chen, Y., Wang, Z., Han, A., Shan, Z., Yang, X., Zhu, X.: Essential distinction between one-step anodization and two-step anodization of Ti. Mater. Res. Bull. 95, 444–450 (2017)

    Article  Google Scholar 

  15. Sarraf, M., Razak, B.A., Dabbagh, A., Nasiri-Tabrizi, B., Kasim, N.H.A., Basirun, W.J.: Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta2O5 nanotubes on Ti–6Al–4V alloy. RSC Adv. 6, 78999–79015 (2016)

    Article  Google Scholar 

  16. Liu, K., Wang, G., Meng, M., Chen, S., Li, J., Sun, X., Yuan, H., Sun, L., Qin, N.: TiO2 nanotube photonic crystal fabricated by two-step anodization method for enhanced photoelectrochemical water splitting. Mater. Lett. 207, 96–99 (2017)

    Article  Google Scholar 

  17. Grimes, A.C., Mor, G.K.: TiO2 nanotube arrays: synthesis, properties, and applications. Springer Science & Business Media, (2009)

  18. Mor, G.K., Varghese, O.K.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588–2593 (2003)

    Article  Google Scholar 

  19. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energ. Mater. Sol. Cells. 90, 2011–2075 (2006)

    Article  Google Scholar 

  20. LeGeros, R.Z.: Calcium phosphate-based osteoinductive materials. Chem. Rev. 108, 4742–4753 (2008)

    Article  Google Scholar 

  21. Lu, T., Qiao, Y., Liu, X.: Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus. 2, 325–336 (2012)

    Article  Google Scholar 

  22. Jonasova, L., Muller, F.A., Helebrant, A., Strnad, J., Greil, P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials. 25, 1187–1194 (2004)

    Article  Google Scholar 

  23. Oh, S., Finõnes, R.R., Daraio, C., Chen, L., Jin, S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 26, 4938–4943 (2005)

    Article  Google Scholar 

  24. Tsuchiya, H., Macak, J.M., Taveira, L., Ghicov, A., Schmuki, P.: Hydroxyapatite growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res. 77, 534–541 (2006)

    Article  Google Scholar 

  25. Merritt, K., Brown, S.A.: Effect of proteins and pH on fretting corrosion and metal ion release. J. Biomed. Mater. Res. A. 22, 111–120 (1988)

    Article  Google Scholar 

  26. Williams, R.L., Brown, S.A., Merritt, K.: Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials. 9, 181–186 (1988)

    Article  Google Scholar 

  27. Knob, L.J., Olson, D.L.: ninth ed. Metals handbook: Corrosion, vol. 13, p. 669 (1987).

  28. Mu, Y., Kobayashi, T., Sumita, M., Yamamoto, A., Hanawa, T.: Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed. Mater. Res. A. 49, 238–243 (2000)

    Article  Google Scholar 

  29. Browne, M., Gregson, P.J.: Effect of mechanical surface pretreatment on metal ion release. Biomaterials. 21, 385–392 (2000)

    Article  Google Scholar 

  30. Kulkarni, M., Mazare, A., Schmuki, P., Iglic, A.: Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 111, 111–136 (2014)

    Google Scholar 

  31. Indira, K., Kamachi Mudali, U., Rajendran, N.: Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications. Ceram. Int. 39, 959–967 (2013)

    Article  Google Scholar 

  32. Huang, Q., Yung, Y., Hu, R., Lin, C., Sun, L., Vogler, E.A.: Reduced platelet adhesion and improved corrosion resistance of superhydrobhophic TiO2 nanotube coated 316L stainless steel. Colloids Surf. B Biointerface. 125, 34–141 (2015)

    Article  Google Scholar 

  33. Ogawa, T.: Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implants. 29, 95–102 (2014)

    Article  Google Scholar 

  34. Yu, Y.H., Lin, Y.Y., Lin, C.H., Chan, C.C., Huang, Y.C.: High-performance polystyrene-/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 5, 535–550 (2014)

    Article  Google Scholar 

  35. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006)

    Article  Google Scholar 

  36. Bayraktar, D., Tas, A.C.: Chemical preparation of carbonated calcium hydroxyapatite powders at 37 C in urea-containing synthetic body fluids. J. Eur. Ceram. Soc. 19, 2573–2579 (1999)

    Article  Google Scholar 

  37. Beranek, R., Hildebrand, H., Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6, B12–B14 (2003)

    Article  Google Scholar 

  38. Raja, K.S., Misra, M., Paramguru, K.: Formation of self-ordered nanotubular structure of anodic oxide layer on titanium. Electrochim. Acta. 51, 154–165 (2005)

    Article  Google Scholar 

  39. Sarraf, M., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Baradaran, S., Nasiri-Tabrizi, B., Rafieerad, A.R.: Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy. Appl. Surf. Sci. 321, 511–519 (2014)

    Article  Google Scholar 

  40. Baradaran, S., Basirun, W.J., Zalnezhad, E., Hamdi, M., Sarhan, A.A., Alias, Y.: Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays. J. Mech. Behav. Biomed. Mater. 20, 272–282 (2013)

    Article  Google Scholar 

  41. Lockman, Z., Sreekantan, S., Ismail, S., Schmidt-Mende, L., Macmanus-Driscoll, J.L.: Influence of anodisation voltage on the dimension of titania nanotubes. J. Alloy Compd. 503, 359–364 (2010)

    Article  Google Scholar 

  42. Mohamed, A.E.R., Rohani, S.: Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065–1086 (2011)

    Article  Google Scholar 

  43. Mohan, L., Anandan, C., Rajendran, V.: Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti–6Al–4V in Hanks’ solution for biomedical applications. Electrochim. Acta. 155, 411–420 (2015)

    Article  Google Scholar 

  44. Cheong, Y.L., Yam, F.K., Ooi, Y.W., Hassan, Z.: Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Mat. Sci. Semicon. Proc. 26, 130–136 (2014)

    Article  Google Scholar 

  45. Assumpção, M.H.M.T., Moraes, A., De Souza, R.F.B., Reis, R.M., Rocha, R.S., Gaubeur, I., Calegaro, M.L., Hammer, P., Lanza, M.R.V., Santos, M.C.: Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Appl. Catal. A. 462– 463, 256–261 (2013)

    Article  Google Scholar 

  46. Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X., Zhang, Z.: Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A Chem. 8, 203–210 (2004)

    Article  Google Scholar 

  47. Feng, C., Wang, Y., Zhang, J., Yu, L., Li, D., Yang, J., Zhang, Z.: The effect of infrared light on visible light photocatalytic activity: an intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl. Catal. B Environ. 8, 61–71 (2012)

    Article  Google Scholar 

  48. Wang, Y., Jing, M., Zhang, M., Yang, J.: Facile synthesis and photocatalytic activity of platinum decorated TiO2−xNx: perspective to oxygen vacancies and chemical state of dopants. Catal. Commun. 8, 46–50 (2012)

    Article  Google Scholar 

  49. Fittipaldi, M., Gombac, V., Gasparotto, A., Deiana, C., Adami, G., Barreca, D., Montini, T., Martra, G., Gatteschi, D., Fornasiero, P.: Synergistic role of B and F dopants in promoting the photocatalytic activity of rutile TiO2. ChemPhysChem. 12, 2221–2224 (2011)

    Article  Google Scholar 

  50. Sarraf, M., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Rafieerad, A.R., Nasiri-Tabrizi, B.: Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceram. Int. 41, 7952–7962 (2015)

    Article  Google Scholar 

  51. Padmanabhan, S.C., Pillai, S.C., Colreavy, J., Balakrishnan, S., McCormack, D.E., Perova, T.S., Gun’ko, Y., Hinder, S.J., Kelly, J.M.: A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chem. Mater. 19, 4474–4481 (2007)

    Article  Google Scholar 

  52. Choi, H.C., Jung, Y.M., Kim, S.B.: Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)

    Article  Google Scholar 

  53. Kang, S.H., Kim, J.Y., Kim, H.S., Sung, Y.E.: Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J. Ind. Eng. Chem. 14, 52–59 (2008)

    Article  Google Scholar 

  54. Yu, W.Q., Qiu, J., Xu, L., Zhang, F.Q.: Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed. Mater. 4, 065012 (2009)

    Article  Google Scholar 

  55. Li, J., He, X., Hang, R., Huang, X., Zhang, X., Tang, B.: Fabrication and corrosion behavior of TiO2 nanotubes on AZ91D magnesium alloy. Ceram. Int. 43, 13683–13688 (2017)

    Article  Google Scholar 

  56. Saji, V.S., Choe, H.C., Brantley, W.A.: An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta Biomater. 5, 2303–2310 (2009)

    Article  Google Scholar 

  57. Shirazi, F.S., Moghaddam, E., Mehrali, M., Oshkour, A., Metselaar, H., Kadri, N., Zandi, K., Abu, N.: In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device. J. Biomed. Mater. Res. Part A. 102, 3973–3985 (2014)

    Article  Google Scholar 

  58. Li, M.O., Xiao, X., Liu, R.: Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Appl. Surf. Sci. 255, 365–367 (2008)

    Article  Google Scholar 

  59. Ma, Q., Li, M., Hu, Z., Chen, Q., Hu, W.: Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater. Lett. 62, 3035–3038 (2008)

    Article  Google Scholar 

  60. Nasiri-Tabrizi, B., Zalnezhad, E., Hamouda, A.M.S., Basirun, W.J., Pingguan-Murphy, B., Fahami, A., Sarraf, M., Rafieerad, A.R.: Gradual mechanochemical reaction to produce carbonate doped fluorapatite–titania composite nanopowder. Ceram. Int. 40, 15623–15631 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya for providing the necessary facilities and resources for this research. The authors are also grateful to Research Affairs of Islamic Azad University, Najafabad Branch for supporting this research.

Funding

This research was fully funded by the University of Malaya with the high impact research grant numbers of RP032C-15AET and PG081-2014B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Bushroa or B. Nasiri-Tabrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarraf, M., Sukiman, N.L., Bushroa, A.R. et al. In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays. J Aust Ceram Soc 55, 187–200 (2019). https://doi.org/10.1007/s41779-018-0224-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0224-1

Keywords

Navigation